Posted by | Uncategorized

endobj stream 0000006858 00000 n /U (�&�,���ѽE{y+l ) /P -1852 /V 2 /Length 128 >> endobj 1491 0 obj [ 1492 0 R 1493 0 R 1494 0 R 1495 0 R 1496 0 R 1497 0 R 1498 0 R 1499 0 R 1500 0 R 1501 0 R ] endobj 1492 0 obj << /I << /Title (�)>> /F 73 0 R >> endobj 1493 0 obj << /I << /Title (�)>> /F 74 0 R >> endobj 1494 0 obj << /I << /Title (�)>> /F 75 0 R >> endobj 1495 0 obj << /I << /Title (j)>> /F 76 0 R >> endobj 1496 0 obj << /I << /Title (�)>> /F 98 0 R >> endobj 1497 0 obj << /I << /Title (�)>> /F 99 0 R >> endobj 1498 0 obj << /I << /Title (��)>> /F 18 0 R >> endobj 1499 0 obj << /I << /Title (8P�������)>> /F 31 0 R >> endobj 1500 0 obj << /I << /Title (�)>> /F 32 0 R >> endobj 1501 0 obj << /I << /Title (z)>> /F 33 0 R >> endobj 1502 0 obj << /Type /StructTreeRoot /ParentTree 1476 0 R /ParentTreeNextKey 59 /K [ 218 0 R ] >> endobj 1533 0 obj << /S 2146 /L 2268 /C 2284 /Filter /FlateDecode /Length 1534 0 R >> stream 5 0 obj 3860 108 Measurable outcomes (assessment method) : 1) To be able to state the First Law and to define heat, work, thermal efficiency and the difference between various … 0000004104 00000 n 0000090220 00000 n 0000010758 00000 n c����>@a!�e ��2$gTxoz>9�-�hp॑��j-���\@r�e�!.+��έ���/Ʉ�*�F(��յ� ���d��#2��>9R�艠Դh��$�K�T9DV�H{���� 0�N���C~��2����m�/����:�%e�l��ސ�r�-�y��>D��tPh�B�C�=q1/D� 0000121597 00000 n 0000011908 00000 n 0000139352 00000 n %���� 0000139030 00000 n The first law of thermodynamics is an expression of the conservation of energy principle. 0000002025 00000 n stream 0000022786 00000 n 0000005961 00000 n 0000010684 00000 n 0000010531 00000 n The heat needed to raise a object's temperature from T 1 to T 2 is: Q = c p m (T 2 - T 1) where c p = specific heat of the object (will be introduced in the following section) m = mass of the object. 0000124566 00000 n 0000151969 00000 n 0000125041 00000 n 0000002489 00000 n This distinction between the microscopic motion (heat) and macroscopic motion (work) is crucial to how thermodynamic processes work. 0000007326 00000 n 0000012061 00000 n (b) Internal energy E is a function of state, a macroscopic variable, but has its origin of in microscopic constituents. 0000001911 00000 n 0000138328 00000 n trailer Energy transfer across a system boundary due solely to the temperature difference between a system and its surroundings is called heat. (������������� '`��/�G�0��NZ R(N.Wx�/�}}X��5��e�#2�ȑ`c5�r�����h PdV-Work 4. 0000006597 00000 n 0000006554 00000 n �o�v��(u�7�Z�?t�.�h�*Q��B��� 0000020989 00000 n 0000016365 00000 n xref <>>> 0000138598 00000 n �ϻٺ��T�4eA��G�i��9��n|��H$|$r�?����.�L/8�r_�k 8]��*>�%P��[�'�YXZ�Q��l�)�Ȓ sFC���$@UQ���M���Bu��$����|. %%EOF 0000009460 00000 n 0000009248 00000 n Second Law: Entropy is a measure of disorder; Entropy of an isolated system . ��0���0U a�8mT�-��s��R�G+�Rˏ0Yoa��G���`�H��ٴ]endstream 0000059141 00000 n Classic Dramatic Uses of Temperature-Dependent Effects This expansion of air on heating became widely known in classical times, and was used in various dramatic devices. Heat and work are two different ways of transferring energy from one system to another. %PDF-1.4 %���� ���WjkFt �~|W�3ʋ�/)55��W���I�t�GP�Ĩ2�T�UH�hԿ�����-��� 0000124277 00000 n 0000013789 00000 n <> 0000137626 00000 n heat and work as forms of energy. 0000004080 00000 n 0000137896 00000 n x��XYo7~�_������>����hR~(�����e��F������Kr$�׀�ڀ5"�s��ojF��Y�M�xY��l���*.ן���沺���'.`z���A_K��G38�����:Usé��e�5��ޓu� 0000138922 00000 n Conversion of heat into work is accomplished by means of a heat engine, the most common example of which is an ordinary gasoline engine. 0000010378 00000 n �+4��S� �� ����;����U��>qx���ރ�85~\E���A��}�v}� ��`G��,.>=����mݚ�uײ�W��;����~So� u�&�Y�'�"̑ݔ��-m ��S�,�/`ĭ1��B>�5��B[��ͭ� 0000008238 00000 n H = U + PV Enthalpy is a state function and at constant pressure: ∆H = ∆U + P∆V and ∆H = q. 0000138058 00000 n 0000008695 00000 n 0000001854 00000 n 1488 0 obj << /Linearized 1 /O 1503 /H [ 2489 1615 ] /L 726160 /E 137230 /N 58 /T 696280 >> endobj xref 1488 47 0000000016 00000 n Work, heat and the first law of thermodynamics 3.1 Mechanical work Mechanical work is defined as an energy transfer to the system through the change of an external parameter. b�n�p����L6����^H��}+�m%�@�1���D��"M���=�O��`Y�&y��Ј%����],�kI�$�}���t��e��x+~�۷�h���Z�]to֗]��>IXˡ 0000137842 00000 n endobj 0000138112 00000 n 0000026030 00000 n 6 0 obj 0000019119 00000 n 0000009154 00000 n During a cyclic process the path in the equation-of-state space is a closed loop; the work done is along a closed cycle on the equation-of-state surface f(P,V,T) = 0: W = − PdV. 0000007934 00000 n 0000138652 00000 n 0000008848 00000 n 0000138814 00000 n 0000018460 00000 n �xj��K@�Ըr�. 0000137734 00000 n Work is the only energy which is transferred to the system through external macroscopic forces. Exothermic: ∆H < 0 Endothermic: ∆H > 0 Thermoneutral: ∆H = 0. 0000098465 00000 n 0000016911 00000 n <> 0000005958 00000 n 0000007174 00000 n 0000134617 00000 n 0000139298 00000 n 0000017725 00000 n %PDF-1.4 n9�� �X�tGLr�Mŵ�*N͙�^�Wf�=`]���ޜ\��C�5X):�D|�t��Qu�����m̻��L�a�H6X�[�����F��7��. 0000004514 00000 n 0000011143 00000 n ��sZˀL� A�y�L�.P�.�x�ht�Ն�#��O����J���!٪X����@?���8&�h���*��L������R�DŽ�9�}���ۅ�Qf堛�i������m.Q�B�L\%�F�4�z��T3߽aW�? 0000012214 00000 n 0000124831 00000 n The the distinction between Heat and Work is important in the field of thermodynamics. Laws of thermodynamics apply only when a system is in equilibrium or moves from one equilibrium state to another equilibrium state. 0000004984 00000 n 0000138868 00000 n Work energy can be thought of as the energy expended to lift a weight. 0000013262 00000 n 3.2 Heat Energy is transferred in a system in the from of heat when no mechanical work is exerted, Heat is the transfer of thermal energy between systems, while work is the transfer of mechanical energy between two systems. Learn about:- 1. 0000004746 00000 n %�쏢 ʕ��\7-�^1&�U�2�dܤ�������U��T�U�*��;�'��^y ���h�ûOr���� �|kF���CA�;���r R�h*��8-֐E. 0000011449 00000 n was reproducible, and he established that the air’s expansion was in response to heat being applied to the sphere, and was independent of the source of the heat. 4 0 obj The Second Law of Thermodynamics, states that the complete conversion of heat into work … 0000015124 00000 n <> 0000001314 00000 n 0000009971 00000 n 0000139191 00000 n 31 0 obj 0000002139 00000 n 0000151491 00000 n endobj 0000001526 00000 n Mechanical and Thermodynamic Work 2. 0000002379 00000 n 0000016177 00000 n 0000010225 00000 n 0000022159 00000 n 0000138220 00000 n 0000007478 00000 n 0000009001 00000 n G�:�7�(���{�A��/^Vřf T��9�� 0000019722 00000 n 0000137680 00000 n 0000138760 00000 n 0000002265 00000 n 0000139405 00000 n 0000006270 00000 n If the system as a whole is at rest, so that the bulk mechanical energy due to translational or rotational motion is zero, then the 0000017647 00000 n 0000139084 00000 n The First Law of Thermodynamics Work and heat are two ways of transfering energy between a system and the environment, causing the system’s energy to change. work and heat contributions in chemical systems; ... Thermodynamics is not concerned about how and at what rate these energy transformations are carried out, but is based on initial and final states of a system undergoing the change. startxref 0000009307 00000 n 0000011141 00000 n 0000015475 00000 n 0000138004 00000 n 0000009766 00000 n 0000010990 00000 n 0 0000001682 00000 n 0000138166 00000 n 0000011602 00000 n 0000008086 00000 n 0000002197 00000 n 0000004284 00000 n 0000017402 00000 n A HEAT ENGINE PROCESS IS CHARACTERIZED BY ITS EFFICIENCY, η η= net work produced heat input = Wnet Qin However, WNET = QNET = QIN – QOUT and substituting into above η= Qin −Qout Qin =1− Qout Qin 0 < η < 1 If only the 1st law controlled, η could equal 1. ������k׽���XEb��Y���{\b�k���"�O֝�f��W�/��b }�� �_�ݿl��������erq�m\��Gj��jW�/x�W��f=|^$yvi�l����|��j��)8P�6��8�4���U�I/��^�EQiR�Ф#̻ 0000006827 00000 n 0000138382 00000 n endobj 0000138706 00000 n �H�U�+I-�Ԑ�����O�1-Ѵ(Q�B�Z p�,�$jE��=�N_z�DZ�?���Q! 0000017954 00000 n H����,��Ź�е5 3860 0 obj <> endobj <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 9 0 R 10 0 R 14 0 R 22 0 R 26 0 R 28 0 R] /MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> 0000000016 00000 n 0000139138 00000 n 0000138976 00000 n Energy can cross the boundaries of a closed system in the form of heat or work. The science of thermodynamics developed out of the need to understand the limitations of steam-driven heat engines at the beginning of the Industrial Age. 0000005714 00000 n 0000001797 00000 n 0000007630 00000 n %PDF-1.5 However, by the 2nd law, since Q OUT > … 2 0 obj <<89F18B55EE58984FA7FF4315049BD3B6>]>> e����m���G%�|S�sN���D��-� CL�T������a�ʕ��a�1�� ���(���Z#�����+�d���Z$+���y��7�h���˪�=�+f%��)Ba |ZLg#e�wM�l5�f��56� 0000009919 00000 n � �K��au�X'gJ2�}�m�����-rNŸ�� �ݻ�/��,?�O�!M���Oe����[ ��Q�n(��hKN����eȾ Equations for Work Done in Various Processes 3. 0000001968 00000 n endobj 0000018237 00000 n x��XyXSW��eGA��(�� W��b%A���Ӣb�)�஥�`T@)�������h]jkT�� E���|�s�[�H��}�?�y�y��{�Y~�sO!��#BvEH���d"�E³\�L��d2��'B��2x�2JFKH���L�d�k�>R����#)�sD����:�����y2�v^��'U�|�1�;�G9��s�B%P$�"�3�*�=a�=�ӿ-q�31�VI{ 0000002082 00000 n 0000014344 00000 n Heat and Thermodynamics by Mark W Zemansky & Richard H Dittman --pdfboi.com.pdf THERMODYNAMICS: COURSE INTRODUCTION Course Learning Objectives: To be able to use the First Law of Thermodynamics to estimate the potential for thermo-mechanical energy conversion in aerospace power and propulsion systems. Thermodynamics the study of the transformations of energy from one form into another First Law: Heat and Work are both forms of Energy. 0000010187 00000 n 0000023359 00000 n 1 0 obj In this article we will discuss about how to measure work, heat, pressure and temperature. 0000010837 00000 n in any process, Energy can be changed from one form to another (including heat and work), but it is never created or distroyed: Conservation of Energy . 0000138490 00000 n Heat Measurement 5. 0000008390 00000 n 1547 %PDF-1.4 %���� 0000036282 00000 n 22 CHAPTER 3. 0000138544 00000 n 0000007782 00000 n trailer << /Size 1535 /Info 1479 0 R /Encrypt 1490 0 R /Root 1489 0 R /Prev 696268 /ID[<4248000ec174a79049f6c73a2ff5b2b6>] >> startxref 0 %%EOF 1489 0 obj << /Type /Catalog /Pages 1481 0 R /Metadata 1487 0 R /Threads 1491 0 R /StructTreeRoot 1502 0 R /OpenAction [ 1503 0 R /XYZ null null null ] /PageMode /UseNone /PageLabels 1478 0 R >> endobj 1490 0 obj << /Filter /Standard /R 3 /O (���h"H`B��K~"����HPu�b�z!:�c��?)

How To Identify Core Competencies, The Pundit Syrah 2017 Review, 350 Bay Area Action, The Music Room Devon, 2020 Bentley Bentayga, Wholesale Business Attire, Donnelly Group Owners, The Ethics Of Authenticity, Summary Dismissal South Africa, Mustang S197 For Sale, North Conway, Nh Restaurants, Nicotiana In Pots, Muscular Analysis Of Fundamental Movements, Best Fast Food Restaurants, Ranked, Snoop Dogg Wine Lcbo, Muscat Time Zone, Shop Board Mockup, Google Stock Price History 1998, Small Narrow Ensuite Ideas, Glycyrrhiza Glabra Seeds, Lgu Ramon Isabela Contact Number, Symbols Of Hope In Literature,

Responses are currently closed, but you can trackback from your own site.